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Abstract

Sarcopenia has been identified as a serious risk factor for morbidity and mortality in late aging and early aging related to neurological disorders, in particular SCIL.
In the presented paper, the quantitative potential of computed tomography (CT) image analysis is used to describe skeletal muscle quality changes of anatomically
defined human skeletal muscles. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate
muscle quality and quantity. Standardized methods for CT analyses and their utility as comorbidity indexes remain undefined, and no existing studies compare these
methods to the assessment of entire radio densitometric distributions. The primary aim of this study is to present a comparison of material content of entire radio
densitometric muscle distributions. The results highlight the specificities of each muscle quality metric between an able-bodied subject, an elderly subject and and

SCI subject, and particularly highlight the value of the connective tissue regime in this regard.

Introduction

The progressive decay of aging muscle, known as Sarcopenia, has
been consistently identified as a risk factor for morbidity and mortality
[1-7]. Its prevalence in older persons and neurological patients,
in particular Spinal Cord Injury (SCI) is characterized by serious
decreases in both physical activity and muscle masses, but a quantitative
definition for its diagnosis remains debated [8-11]. Clinical literature
correlates decay of physiological function (loss of muscle strength) to
sarcopenia [12-14]. However, the degree to which this loss of muscle
strength may be attributed to the loss of muscle mass remains uncertain,
if quality of skeletal muscle is not clearly defined and quantitate [15-
18]. Nonetheless, methodological comparisons for the precise, non-
invasive quantification of the progressive reduction of muscle quality
remain disparately described in literature. Standardizing a quantitative
methodology for muscle assessment in this regard would allow
sarcopenia concept research to become a useful indicator, in particular
of compensatory targets for clinical intervention. Aging skeletal muscle
has a significantly reduced proportion of glycolytic type II muscle
fibers compared to young muscle, that may explain at least in part its
decreased speed, force and, thus, power [19-21]. Additionally, aged
tissues significantly lack the ability to process triglycerides, resulting
in increased lipid droplet storage in and along muscle fibers [22]. This
increased adiposity and decreased contractility has been linked to
mitochondrial dysfunction and impaired oxidative metabolism, which
has been shown to relate to metabolic insulin resistance and Type 2
diabetes mellitus in patients [23, 24]. In general, increased percentage
of non-contractile tissues (adipocytes and fibrous connective tissues),
aggravates the size loss (and eventually, number) of muscle fibers,
conferring an increased risk for reduced mobility, frailty, disability,
and eventual hospitalization [25 - 27]. Studying how these changes
affect mobility is the prime motive for lower extremity function (LEF)
research, which cites LEF as the main indicator for mobility as a clinical
screening tool [28]. LEF is generally assessed by measuring walking
capacity (gait speed) and leg strength [29]. Altogether, the association
of sarcopenic muscle degeneration with decreasing LEF illustrates how
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aging induces mobility impairment, incident disability, and eventual
mortality [30-34].

Muscle biopsy is the standard clinical procedure used for the
assessment of muscle, but the procedure is invasive and occasionally
limited in relevance by the small size of excised tissue. However,
recent investigations have realized the potential of X-ray computed
Tomography (CT) and Magnetic Resonance Imaging (MRI) to describe
muscle quality and composition. This is often performed either quasai-
quantitatively, via the visual grading of muscle structure morphologies
[35-38], or quantitatively via the computation of muscle cross-sectional
areas and radiodensitometric absorption values in CT, measured
in Hounsfield units (HU) [39-44]. Despite the superior soft tissue
contrast in MRI and non-dependence on the use of ionizing radiation,
CT has higher spatial resolution and is comparatively less obfuscated
by technical variations in machine preparation and acquisition
protocols [45]. These notions are critical when attempting to discern
diagnostically-relevant information from cross-sectional images of soft
tissue.
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Recent studies have demonstrated the utilization of CT image
analysis to quantify muscle composition and quality [46]. Analyzing
muscle degeneration in particular has been of great focus in research
and many studies have been focused how changes in skeletal muscle
density correlate with changes in muscular volume and function in
patients suffering from a variety of conditions or diseases. [47]. Further
research is therefore essential to associate how muscle composition can
give indications about the overall physical condition of the patient.

Methods

Patients were CT scanned using a phantom that calibrated against
the density changes within each tissue. The muscle that was identified
was the Tibialis Anterior. The scans ranged from the proximal tibia to
the lateral malleolus. Three subjects were recruited, a young able-bodied
control subject, an elderly subject and a spinal cord injury patient.
The scans were segmented using Mimics (Materialize) using masking
technique to identify the Tibialis Anterior, the tibia and the fibula in
each slice. Three dimensional models were created from the masks.
Depending on the Hounsfield values for the muscle, the pixel was
determined to belong to fat (HU<-10), connective tissue (-10<HU<41)
and muscle tissue (HU>41). By examining the density distributions in
the three-dimensional model, the material composition of the muscle
was quantified.

Results

The linear relationship between the Hounsfield units and the
material density was used to map all voxels belonging to the Tibialis
Anterior muscle. A three-dimensional image of the muscle and the
density values was created for all the subjects and can be seen in
Figure 1. The figure shows the three-dimensional model of the muscle
along with the representation of the three different tissue types: fat,
connective tissue and muscle fibres. The material distributions were
quantified for both legs which gives information about the symmetrical
aspects between the muscles. From the figure, it can be seen how
the elderly subject and pathological subject, who suffered from
asymmetrical lower body paralysis from a pelvic mass infiltration of the
sciatic nerve, exhibited increasing amounts of fat and loose connective
tissue, compared to the control subject. Likewise, the left leg of the
pathological subject contains higher amount of fat than the right leg,
thus quantifying the asymmetric nature of the subject’s condition and
be able to quantify the severity of the muscle degeneration. Figure
2 shows the histogram analysis of the soft material content of the
entire leg for the same individuals. The graphs show the volume as a
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Figure 1. Shows the material composition within the Tibialis anterioris from each subject.
The tissue types are: fat (yellow), connective tissue (cyan), and muscle (red).
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Figure 2. Material histogram distribution of the right leg between all the subjects

function of Hounsfield units. The height of the peak and the location
give indication about amount of each tissue present in the thigh. From
the figure, it can be seen the two peaks accounting fat and muscle and
how their distribution is dramatically different in three cases. The
comparison between figure 1 and 2 shows the different composition
of a single muscle (Figure 1) in respect of the overall thigh (histograms
in Figure 2). Muscle and fat are inverted in terms of volumes for young
healthy and aged individual while the distribution in the pathological
subject has a completely different profile.

Discussion

This work shows the possibility to characterize graphically the
muscle based on computer tomographic image and to create a subject
specific profile that could be used to assess sarcopenia. The results
show how the material changes in the muscle. Understanding of how
the distribution between muscle tissue, fat and connective tissue can
underline how sarcopenia occurs in patients. Connection with the
biomechanical output of the muscle has been established [47], where
a higher muscle tissue peak and a lower fat tissue peak were associated
with increased kinetic performance of the muscle. This is in agreement
with the findings presented in the study where a reduction of muscle
tissue was found in the elderly subject and the SCI patient compared
to the able-bodied subject [48-59]. Using the analysis presented in the
paper to quantify the material composition of any anatomically defined
skeletal muscle is the first step to standardize when discussing how to
address skeletal muscle quality and rehabilitation by Assisted Exercise.
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